# MCQ Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry with Answers

If you’re looking for a way to enhance your Class 10 Maths, then look no further than the NCERT MCQ Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry with Answers. The MCQ Questions for Class 10 Maths with Answers are aligned to all topics covered so it will be helpful when preparing for your exams, no matter what subject you’re studying! Don’t forget about scoring maximum points during exam preparation by using these free Class 10 Maths Chapter 8 Introduction to Trigonometry Objective Questions.

## Introduction to Trigonometry Class 10 MCQs Questions with Answers

What are you waiting for? Get all the answers to Class 10 Maths Chapter 8 MCQs! It’s time that students power up and start practicing these MCQ Questions of Introduction to Trigonometry Class 10 with answers. The best way of doing so would be solving them yourself in order not only to know which answer is correct but also to understand why each solution works as well.

Question 1.
If cos (α + β) = 0, then sin (α – β) can be reduced to
(a) cos β
(b) cos 2β
(c) sin α
(d) sin 2α

Question 2.
If cos (40° + A) = sin 30°, the value of A is:?
(a) 60°
(b) 20°
(c) 40°
(d) 30°

Question 3.
If sin x + cosec x = 2, then sin19x + cosec20x =
(a) 219
(b) 220
(c) 2
(d) 239

Question 4.
If cos 9a = sin a and 9a < 90°, then the value of tan 5a is
(a) $$\frac { 1 }{ \sqrt { 3 } }$$
(b) √3
(c) 1
(d) 0

Question 5.
7 sin2θ + 3 cos2θ = 4 then :
(a) tan θ = $$\frac { 1 }{ \sqrt { 2 } }$$
(b) tan θ = $$\frac { 1 }{ 2 }$$
(c) tan θ = $$\frac { 1 }{ 3 }$$
(d) tan θ = $$\frac { 1 }{ \sqrt { 3 } }$$

Answer: (d) tan θ = $$\frac { 1 }{ \sqrt { 3 } }$$

Question 6.
(1 + tanθ + secθ) (1 + cotθ – cosecθ) is equal to
(a) 0
(b) 1
(c) 2
(d) -1

Question 7.
Ratios of sides of a right triangle with respect to its acute angles are known as
(a) trigonometric identities
(b) trigonometry
(c) trigonometric ratios of the angles
(d) none of these

Answer: (c) trigonometric ratios of the angles

Question 8.
If tan θ = $$\frac { 12 }{ 5 }$$, then $$\frac { 1+sinθ }{ 1-sinθ }$$ is equal to
(a) 24
(b) $$\frac { 12 }{ 13 }$$
(c) 25
(d) 9

Question 9.
The value of cos θ cos(90° – θ) – sin θ sin (90° – θ) is:
(a) 1
(b) 0
(c) -1
(d) 2

Question 10.
If x = a cos θ and y = b sin θ, then b2x2 + a2y2 =
(a) ab
(b) b2 + a2
(c) a2b2
(d) a4b4

Question 11.
If ΔABC is right angled at C, then the value of cos (A + B) is
(a) 0
(b) 1
(c) $$\frac { 1 }{ 2 }$$
(d) $$\frac { \sqrt { 3 } }{ 2 }$$

Question 12.
If x and y are complementary angles, then
(a) sin x = sin y
(b) tan x = tan y
(c) cos x = cos y
(d) sec x = cosec y

Answer: (d) sec x = cosec y

Question 13.
sin (45° + θ) – cos (45° – θ) is equal to
(a) 2 cos θ
(b) 0
(c) 2 sin θ
(d) 1

Question 14.
If 0° < θ < 90°, then sec 0 is (a) >1
(b) < 1
(c) =1
(d) 0

Question 15.
In right triangle ABC, right angled at C, if tan A = 1, then the value of 2 sin A cos A is
(a) 0
(b) 1
(c) – 1
(d) 2

Question 16.
Given that sin A=$$\frac { 1 }{ 2 }$$ and cos B=$$\frac { 1 }{ \sqrt { 2 } }$$ then the value of (A + B) is:
(a) 30°
(b) 45°
(c) 75°
(d) 15°

Question 17.
If sin A = $$\frac { 1 }{ 2 }$$, then the value of cot A is
(a) √3
(b) $$\frac { 1 }{ \sqrt { 3 } }$$
(c) $$\frac { \sqrt { 3 } }{ 2 }$$
(d) 1

Question 18.
If √3tanθ = 3sinθ, then the value of sin2θ−cos2θ is
(a) 0
(b) 1
(c) $$\frac { 1 }{ 2 }$$
(d) $$\frac { 1 }{ 3 }$$

Answer: (d) $$\frac { 1 }{ 3 }$$

Question 19.
Out of the following options, the two angles that are together classified as complementary angles are
(a) 120° and 60°
(b) 50° and 30°
(c) 65° and 25°
(d) 70° and 30°

Question 20.
If sin θ − cos θ = 0, vthen the value of θ is
(a) 90°
(b) 30°
(c) 45°
(d) 60°

Question 21.
If tan 2A = cot (A – 18°), then the value of A is
(a) 24°
(b) 18°
(c) 27°
(d) 36°

Question 22.
If cos A + cos2 A = 1, then sin2 A + sin4 A is
(a) -1
(b) 0
(c) 1
(d) 2

Question 23.
If sin θ + sin2 θ = 1, then cos2 θ + cos4 θ = ____
(a) -1
(b) 0
(c) 1
(d) 2

Question 24.
sin 2B = 2 sin B is true when B is equal to
(a) 90°
(b) 60°
(c) 30°
(d) 0°